How can I analyze this recursion for $k>0$? $$T(n)=n+T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+\cdots+T\left(\frac{n}{2^k}\right)$$
I want to prove that $T(n)=\theta(n\log(n))$.
Is it true that $T(n)=n+\frac{n}{2}+\cdots+\frac{n}{2}=n+\frac{n}{2}\log(n)$?
I got it by iterations method of these:
\begin{align}T(n)&=n+T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+\cdots+T\left(\frac{n}{2^k}\right)\\ T\left(\frac{n}{2}\right)&=\frac{n}{2}+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right)+\cdots+T\left(\frac{n}{2^{k+1}}\right)\\ T\left(\frac{n}{4}\right)&=\frac{n}{4}+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right)+T\left(\frac{n}{32}\right)+\cdots+T\left(\frac{n}{2^{k+2}}\right)\\ T\left(\frac{n}{8}\right)&=\frac{n}{8}+T\left(\frac{n}{16}\right)+T\left(\frac{n}{32}\right)+\cdots+T\left(\frac{n}{2^{k+3}}\right)\\ &\vdots\end{align}