Find $\lim_{n\to \infty} \sum_{k=1}^n \frac{k}{n^2+k^2}$
Since $\frac{k}{n^2+k^2}\leq \frac{k}{k^2+k^2}=\frac{1}{2k}$, then $\sum_{k=1}^n \frac{k}{n^2+k^2}\leq \sum_{k=1}^n \frac{1}{2k}=\frac{1}{2} \sum_{k=1}^n\frac{1}{k}$.
Now we send $n$ to infinity, then since $\sum_{k=1}^\infty \frac{1}{k}$ is harmonic, $\lim_{n\to \infty} \sum_{k=1}^n \frac{k}{n^2+k^2}$ doesn't exist.
I wonder if my thinking is right.