Let $\epsilon>0$ and let $E$ denote the event that $A+\epsilon\leq B$.
Then: $$(A+\epsilon)1_E\leq\max(A,B)1_E$$ and consequently: $$\mathbb EA1_{E}+\epsilon\Pr(E)\leq\mathbb E\max(A,B)1_E$$
Taking $\epsilon>0$ small enough we get $\Pr(E)>0$ so that:
$$\mathbb EA1_E<\mathbb EA1_{E}+\epsilon\Pr(E)$$
That leads to:
$$\mathbb EA=\mathbb EA1_E+\mathbb EA1_{E^c}<E\max(A,B)1_E+E\max(A,B)1_{E^c}=\mathbb E\max(A,B)$$
addendum (hint for finding $\mathbb E\max(A,B)$)
$$\int_0^1\int_0^1\max(x,y)dxdy=\int_0^1\int_0^y\max(x,y)dxdy+\int_0^1\int_y^1\max(x,y)dxdy=$$$$\int_0^1\int_0^yydxdy+\int_0^1\int_y^1xdxdy$$