Where can I find the following Fourier transform:
$\mathcal{F}[\exp(-a\|x\|)](\omega) = \int_{\mathbb{R}^{d}}\exp(-2\pi i \langle\omega, x\rangle) \exp(-a\|x\|) dx$
where $\| x\|$ is the standard Euclidean norm, i.e. $\| x\|=\sqrt{x_1^2+\cdots +x_n^2}$
Thanks!