I am trying to determine the Fourier transform of the Heaviside function $H$ as a tempered distribution. Consequently, for $\phi\in\mathcal{S}(\mathbb{R})$, I get
$$\begin{aligned} (\mathcal{F}H)(\phi)&=H(\mathcal{F}\phi) \\ &=\int_0^\infty(\mathcal{F}\phi)(\xi)\,d\xi \\ &=\int_0^\infty\left(\int_{-\infty}^\infty\phi(x)e^{-i\xi x}\,dx\right)\,d\xi \\ &=\int_{-\infty}^{\infty}\left(\int_0^\infty e^{-i\xi x}\,d\xi\right)\phi(x)\,dx\qquad\text{by Fubini} \\ &=\lim_{N\to\infty}\int_{-N}^N\left(\frac{i}{x} e^{-i\xi x}\bigg|_{\xi=0}^{\infty}\right)\phi(x)\,dx \\ &=\lim_{N\to\infty}\int_{-N}^N\left(\frac{i}{x}\lim_{R\to\infty}e^{-i\xi x}\bigg|_{\xi=0}^R\right)\phi(x)\,dx \\ &=i\lim_{N\to\infty}\int_{-N}^N\frac{\phi(x)}{x}\lim_{R\to\infty}e^{-iRx}\,dx-i\lim_{N\to\infty}\int_{-N}^N\frac{\phi(x)}{x}\,dx, \end{aligned}$$ so where am I going wrong? If I had $\epsilon\downarrow 0$ instead of $N\to\infty$, then this would certainly look closer to what I want, but I cannot see the mistake.