I need verificate a proof of the following fact:
If $Y$ is a finite dimensional subspace of a normed space $X$, then $Y$ is a closed.
The most common proof of this fact uses the completes of all finite dimensional subspace, I understand it correctly, but I have curious to know why the next proof is not so popular, is there any error in the following argument?
Alternative proof: Let $Y$ be a finite dimensiona subespace of a normed vector space $X$. Suppose that $\dim(Y)= m$, then there exist $\left\{v_{1},\ldots,v_{m}\right\}\subset X$ independent vectors such that $\mathrm{span}\left\{v_{1},\ldots,v_{n}\right\}=Y$. Let $x\in X$ be a limit point of $Y$, then there are $\left\{x_{n}\right\}_{n\in\mathbb{N}}\subseteq Y$ such that $\lim_{n\rightarrow\infty}x_{n}=x$. We must show that $x\in Y$. In fact, note that $$x_{n}=\alpha_{1}^{(n)}v_{1}+\cdots+\alpha_{m}^{(n)}v_{m}$$ where $\alpha_{i}^{(n)}\in \mathbb{K}$ for $i=1,\ldots,m$ and $n\in \mathbb{N}$ ($\mathbb{K}$ is $\mathbb{R}$ or $\mathbb{C}$). Therefore, we have $$x=\lim_{n\rightarrow\infty}x_{n}=\lim_{n\rightarrow\infty}\left(\alpha_{1}^{(n)}v_{1}+\cdots+\alpha_{m}^{(n)}v_{m}\right)=\lim_{n\rightarrow\infty}\left(\alpha_{1}^{(n)}\right)v_{1}+\cdots+\lim_{n\rightarrow\infty}\left(\alpha_{m}^{(n)}\right)v_{m}.$$ Note that $\lim_{n\rightarrow\infty}\left(\alpha_{i}^{(n)}\right)$ exists since if this is not fulfilled then $\lim_{n\rightarrow\infty}x_{n}$ does not exist. Therefore, $x\in Y$.