Let complex $z$ such $|z|=1$ Find the maximum of the value $$f(z)=|z^3+3z+2i|$$
I try following $$z=e^{ix}\Longrightarrow z^3=e^{3ix}=\cos{3x}+i\sin{3x}$$ so $$z^3+3z+2i=(\cos{3x}+3\cos{x})+(\sin{3x}+3\sin{x}+2)i$$ so we have $$|z^3+3z+2i|=\sqrt{(\cos{3x}+3\cos{x})^2+(\sin{3x}+3\sin{x}+2)^2}=\sqrt{14+6\cos{3x}\cos{x}+6\sin{3x}\sin{x}+4\sin{3x}+12\sin{x}}=\sqrt{14+6\cos{2x}+4\sin{3x}+12\sin{x}}=\sqrt{20-4\sin^3{x}+24\sin{x}-12\sin^2{x}}$$
even we can use this find maximum, I ask have other more simple method to find this maximum?