2

This is the integral: $$\int_{0}^{\infty} \int_{0}^{\infty} xe^{-(x^2+y^2)} dx dy$$ So i have this: $$\int_{0}^{\infty}e^{-y^2}\left( \int_{0}^{\infty}xe^{-x^2}dx\right)dy= \int_{0}^{\infty} -\frac{e^{-y^2}}{2} \left(\lim_{b \to \infty} e^{-b}-e^0\right)$$ $$=\frac{1}{2}\int_{0}^{\infty}e^{-y^2}dy$$

How can i resolve that last integral. And i know that the answer is $\frac{\sqrt \pi}{4}$

Olivier Oloa
  • 120,989

0 Answers0