Put
$A=\begin{pmatrix} 1 & -5 & 4\\ 1 & -2 & 13\\ -2 & 13 & 7 \end{pmatrix}.$
The smith normal form of this matrix is \begin{pmatrix} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 6 \end{pmatrix}
and now I want to find $a , b, c$ $\in$ $\Bbb Z_{\ge 0}$ such that $\Bbb Z^3/A\Bbb Z^3$ $\cong$ $\Bbb Z_a$$\oplus$$\Bbb Z_b$$\oplus$$\Bbb Z_c$ and $a$ | $b$ | $c$.
Please can anyone lend a hand here?