I just came across this:
$$\cos^2\left(\frac{2k\pi}5\right)+\cos^2\left(\frac{4k\pi}5\right)= c$$ where $c$ is a positive, integer constant.
How do I obtain this? And what is the constant?
Thanks!
I just came across this:
$$\cos^2\left(\frac{2k\pi}5\right)+\cos^2\left(\frac{4k\pi}5\right)= c$$ where $c$ is a positive, integer constant.
How do I obtain this? And what is the constant?
Thanks!
Using Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$
with $5A=2k\pi,5\nmid k\implies\sin5A\sin A\ne0,$
$6A=2k\pi+A,4A=2k\pi-A$
$$\cos^22A+\cos^24A=\cos^22A-\sin^24A+1$$ $$=1+\cos6A\cos2A=1+\cos A\cos2A=1+\dfrac{\sin2A\cos2A}{2\sin A}=1+\dfrac{\sin4A}{4\sin A}=1-\dfrac14$$