Let $x = 2^{2016}$ and $y = 3^{2016}$
So this is $\sqrt{x^2 + 2*xy + y^2} = x+y = 2^{2016} + 3^{2016}$ and we need to find the last three digits of that.
Eulers formula tells us that $3^{\phi(1000)} \equiv 1 \mod 1000$ so the totient function of $\phi(1000) = \phi(2^3*5^3) = \phi(2^3)\phi(5^3) = (2-1)2^2(5-1)5^2 = =400$ so $3^{400}$ will have the last three digits of $001$.
$3^{2016} = (3^{400})^5*3^{16} \equiv 3^{16} \mod 1000$ and
$3^2 = 10 - 1$ so
$3^{16} = (10 -1)^8 = \sum 10^i{8 \choose i}(-1)^{8-i} \equiv 1 - 8*10 + 28*100 \mod 1000 \equiv 800 - 80 + 1 \equiv 721$. So last three digits of $3^{2016}$ are $721$.
We can't use Euler's thereom to find $2^{2016} \mod 1000$ as $2$ and $1000$ are not relatively prime.
So .... well, $1000 = 2^3*125$ so we can solve $2^{2013} \equiv x \mod 125$.
As $2^{\phi (125)} = 2^{100} \equiv 1 \mod 125$ so $2^{2013}\equiv 2^{13}\mod 125$ and $2^{13} = 1024*8 \equiv 8*24 = 8(25-1) =192 \equiv 67 \mod 125$
So $2^{2013} = k*125 + 67$ so $2^{2016} = k*1000 + 8*67 \equiv 536 \mod 1000$
So $2^{2016} + 3^{2016} \equiv 536 + 721 = 1257\equiv 257 \mod 1000$
So the last three digits would be $257$