Jacobi's formula for the derivative of the determinant is
$$\frac{\mathrm{d}}{\mathrm{d} t}\mathrm{det}\left(A(t)\right)=\mathrm{tr}\left(\mathrm{adj}(A(t))\frac{\mathrm{d}}{\mathrm{d} t}A(t)\right)$$
where $\mathrm{adj}(A)$ is the adjugate of $A$. The quantity $\mathrm{det}(A-\lambda I)$ depends on the entry $A_{ij}$ both via $A$ and via $\lambda$. So by the chain rule we have
$$\frac{\mathrm{d}}{\mathrm{d} A_{ij}}\mathrm{det}(A-\lambda I)=\frac{\partial}{\partial A_{ij}}\mathrm{det}(A-\lambda I)+\frac{\mathrm{d}\lambda}{\mathrm{d}A_{ij}}\frac{\partial}{\partial \lambda}\mathrm{det}(A-\lambda I)$$
$$=\mathrm{tr}\left(\mathrm{adj}(A-\lambda I)E_{ij}\right)+\frac{\mathrm{d}\lambda}{\mathrm{d}A_{ij}}\mathrm{tr}\left(\mathrm{adj}(A-\lambda I)(-I)\right)$$
$$=\mathrm{adj}(A-\lambda I)^T_{ij}-\frac{\mathrm{d}\lambda}{\mathrm{d}A_{ij}}\mathrm{tr}\left(\mathrm{adj}(A-\lambda I)\right)$$
(where $E_{ij}$ is the matrix with a $1$ in the $(i,j)$ position, and $0$s elsewhere). But since $\lambda$ is an eigenvalue, the quantity $\frac{\mathrm{d}}{\mathrm{d} A_{ij}}\mathrm{det}(A-\lambda I)$ is zero. So
$$\mathrm{adj}(A-\lambda I)^T_{ij}-\frac{\mathrm{d}\lambda}{\mathrm{d}A_{ij}}\mathrm{tr}\left(\mathrm{adj}(A-\lambda I)\right)=0$$
and hence
$$\frac{\mathrm{d}\lambda}{\mathrm{d}A_{ij}}=\frac{\mathrm{adj}(A-\lambda I)^T_{ij}}{\mathrm{tr}\left(\mathrm{adj}(A-\lambda I)\right)}$$
[The following might be useful: Note that if a matrix has eigenvalues $\lambda_i$ for $i=1,\dots,n$ then its adjugate has eigenvalues $\prod_{j\neq i}\lambda_j$ for $i=1,\dots,n$. Since one of the eigenvalues of $A-\lambda I$ is zero, all but one of these eigenvalues of $\mathrm{adj}(A-\lambda I)$ is therefore also zero, and we have
$$\mathrm{tr}\left(\mathrm{adj}(A-\lambda I)\right)=\prod(\lambda_j-\lambda)$$
where the product is over $A$'s other eigenvalues.]