-1

I have been told to use Fermat-Euler theorem. Using it, I get to $2^{(323)(288)} \equiv 1 \pmod{323}$, but I am not sure where to go from there!

N. F. Taussig
  • 76,571

2 Answers2

3

We know $\varphi(323)=288$. This means $$2^{288}\equiv 1\mod 323$$ Thus, $$2^{300}\equiv2^{300-288}\equiv2^{12}\mod 323$$ And $2^{12}=4096$, so from this point on, there's no large numbers to worry about.

To finish the calculation simply note that $2^{12}\equiv 4096\equiv 220\mod 323$, and thus

$$2^{300}\equiv 220\mod 323$$

0

Method$\#1:$

As $323=17\cdot19$

$2^4\equiv-1\pmod{17}\implies2^8\equiv1$ as $300\equiv4\pmod8,2^{300}\equiv2^4\pmod{17}\equiv-1\ \ \ \ (1)$

$2^9\equiv-1\pmod{19}\implies2^{18}\equiv1,300\equiv-6\pmod{18},$

$2^{300}\equiv2^{-6}\pmod{19}\equiv7^{-1}\equiv11\ \ \ \ (2)$ as $7\cdot11\equiv1\pmod{19}$

Apply CRT on $(1),(2)$

Method$\#2:$

$\lambda(323)=$lcm$(17-1,19-1)=144$

$300\equiv12\pmod{144}\implies2^{300}\equiv2^{12}\pmod{323}\equiv?$