$$\sum_{n \geq 0} \frac{x^{8n}}{(8n)!}$$
Here's my try:
$$\sum_{n \geq 0, \text{even}} \frac{x^{4n}}{(4n)!}$$
$$=\sum_{n \geq 0} \frac{(-1)^n+1^n}{2} \frac{x^{4n}}{(4n)!}$$
By convergence I can split the sums.
$$=\frac{1}{2} \sum_{n \geq 0} \frac{x^{4n}}{(4n)!}+\frac{1}{2} \sum_{n \geq 0} (-1)^n \frac{x^{4n}}{(4n)!}$$
Now consider,
$$\sum_{n \geq 0} \frac{x^{4n}}{(4n)!}$$
$$=\sum_{n \geq 0, \text{even}} \frac{x^{2n}}{(2n)!}$$
$$=\sum_{n \geq 0} \frac{(-1)^n+1^n}{2} \frac{x^{2n}}{(2n)!}$$
$$=\frac{1}{2} \left( \cos(x)+\cosh (x) \right)$$
Now if I find,
$$\sum_{n \geq 0} (-1)^n \frac{x^{4n}}{(4n)!}$$
I'll be done with the problem. How do I do that?
Bonus question:
Compute
$$\sum_{n \geq 0} \frac{x^{3n}}{(3n)!}$$
For this one I'm out of ideas.