The following is all done in the domain of the Method of Coefficients. Some of the indexing restrictions can be alleviated if needed. The results are a little tedious but simple. It's nice to have generalized techniques on hand.
LEMMA 1: For $b>a$ and $b-a\in\mathbb{Z}$ the generating function for $\dbinom {n+ak}{m+bk}$ is
$$[t_0^n]\frac {t_0^m}{(1-t_0)^{m+1}}\left[1-\frac {t_0^{b-a}s}{(1-t_0)^b}\right]^{-1}$$
Where $s$ is the indexing variable, i.e., the $[t_0^n]$ expression is an operator transforming
$$\sum\limits_k\left(\frac {t_0^i}{(1-t_0)^j}\right)^ks^k\mapsto\sum\limits_k\binom {n+ak}{m+bk}s^k$$
PROOF:
$$\begin{align*}[t_0^n]\frac {t_0^m}{(1-t_0)^{m+1}}\left[1-\frac {t_0^{b-a}s}{(1-t_0)^b}\right]^{-1} & =[t_0^0]\frac {t_0^{m-n}}{(1-t_0)^{m+1}}\sum\limits_{k=0}^{+\infty}\left(\frac {t_0^{b-a}}{(1-t_0)^b}\right)^k s^k\end{align*}$$
For a particular $k$, we evaluate the term selected by $\left[t_{0}^{0}\right]$ (the $\operatorname{CT}(\cdot)$ type of term).
$$\begin{align*}[t_0^0]\frac {t_0^{m-n}}{(1-t_0)^{m+1}}\sum\limits_{k=0}^{+\infty}\left(\frac {t_0^{b-a}}{(1-t_0)^b}\right)^k & =[t_0^0]\frac {t_0^{m-n+(b-a)k}}{(1-t_0)^{m+bk+1}}\\ & =[t_0^0] t_0^{m-n+(b-a)k}\sum\limits_{i=0}^{+\infty}\binom {m+bk+i}{i}t_0^i\\ & =[t_0^0]\sum\limits_{i=0}^{+\infty}\binom {m+bk+i}{i}t_0^{m-n+(b-a)k+i}\end{align*}$$
Setting $m-n+(b-a)k+i=0$ gives $i=n-m-(b-a)k$, so
$$\begin{align*}\binom {m+bk+n-m-(b-a)k}{n-m-(b-a)k} & =\binom {n+ak}{n-m-(b-a)k}\\ & =\binom {n+ak}{m+bk}\end{align*}$$
LEMMA 2:
$$\sum\limits_{k=0}^{+\infty}\prod\limits_{i=0}^j \binom {n_i+a_ik}{m_i+b_ik}s^k=\left[\prod\limits_{i=0}^j\left([t_i^{n_i}]\frac {t_i^{m_i}}{(1-t_i)^{m_i+1}}\right)\right]\left[1-s\prod\limits_{i=0}^j\frac {t_i^{b_i-a_i}}{(1-t_i)^{b_i}}\right]^{-1}$$
PROOF: This is just the iterative application of LEMMA 1 since the terms are isolated.
LEMMA 3:
$$\sum\limits_{k=0}^{+\infty}\prod\limits_{i=0}^j \binom {n_i+a_ik}{m_i+b_ik}=\left[\prod\limits_{i=0}^j\left[t_i^{n_i}\right]\frac {t_i^{m_i}}{(1-t_i)^{m_i+1}}\right]\left[1-\prod\limits_{i=0}^j\frac {t_i^{b_i-a_i}}{(1-t_i)^{b_i}}\right]^{-1}$$
PROOF: This is just the dropping of $s$, or setting $s=1$ if you prefer, but that has the implication of evaluation, which is not necessary since the purpose is to generate coefficients not function values.
EXAMPLE 4: Note that
$$\begin{align*}\sum\limits_{k=0}^{+\infty}\binom xk\binom {y+n}{n+k} & =[t_0^x][t_1^{y+n}]\frac {t_0^0}{1-t_0}\frac {t_1^n}{(1-t_1)^{n+1}}\left(1-\frac {t_0^1}{1-t_0}\frac {t_1^1}{1-t_1}\right)^{-1}\\ & =[t_0^0][t_1^0]\frac {t_0^{-x}}{1-t_0}\frac {t_1^{-y}}{(1-t_1)^{n+1}}\left(1-\frac {t_0^1}{1-t_0}\frac {t_1^1}{1-t_1}\right)^{-1}\\ & =[t_0^0][t_1^0]\frac {t_0^{-x} t_1^{-y}}{(1-t_1)^n}\frac 1{1-t_0-t_1}\\ & =[t_0^0][t_1^0]\frac {t_0^{-x} t_1^{-y}}{(1-t_1)^{n+1}}\frac 1{1-t_0/(1-t_1)}\\ & =[t_0^0][t_1^0]\frac {t_0^{-x} t_1^{-y}}{(1-t_1)^{n+1}}\sum\limits_{i=0}^{+\infty}\left(\frac {t_0}{1-t_1}\right)^i\\ & =[t_0^0][t_1^0]\sum\limits_{i=0}^{+\infty}\frac {t_0^{i-x} t_1^{-y}}{(1-t_1)^{n+i+1}}\end{align*}$$
Evaluating the $t_0$ term, we have that $i=x$. Thus, we get
$$[t_1^0]\frac {t_1^{-y}}{(1-t_1)^{n+x+1}}=[t_1^0]\sum\limits_{j=0}^{+\infty}\binom {x+n+j}{j} t_1^{j-y}$$
Setting $j-y=0$ gives $j=y$.
$$\binom {x+y+n}y=\binom {x+y+n}{x+n}$$
Which is your first answer.
Remark: If wanted I can carry out the three term evaluation in the comments but it gets a little tedious. This was a good problem for me because I have been meaning to organize this for ages.