First part of the question:
There are 25 places for the first rook for the next rook there are (25-9)=16 places. For the third rook there are (16-7)=9 placesthe b similarly for the fourth and fifth rook there are 4 and 1 place respectively. Therefore the board can be set up in 25×16×9×4×1=14400 ways.
Second part of the question:
First we have to consider in how many ways can we setup the board if we each rook lies on the diagonal. If we consider that each rook lies in the diagonal then first rook can be placed in 5 places second rook in 4 places and so on. Therefore board can be setup in 5! ways if each rook lies on the main diagonal so if none of the rooks lie on the same diagonal then the board can be setup in (14400-5!=14400-120=14280)
For the third part:
It is exactly like the first except for the first rook there are 5 places and for rest of rooks same so the board can be setup in (5×16×9×4×1=2880) ways.