Ten years later (with Residue Calculus).
If $\gamma^R=\gamma_1^R\cup \gamma_2^R$ is the contour
$$
\gamma_R^1(t)=t, \,\,\,t\in [-R,R], \quad
\gamma_R^2(t)=R\mathrm{e}^{it}, \,\,\,t\in [0,\pi],
$$
then
$$
\int_{\gamma_R}\frac{dz}{(1+z^2)^n}=2\pi i\,
\mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg).
$$
But
$$
\bigg|\int_{\gamma_R^2}\frac{dz}{(1+z^2)^n}\,\bigg|=
\bigg|\int_0^\pi\frac{iR\mathrm{e}^{it}dt}{(1+\big(R\mathrm{e}^{it})\big)^n}
\bigg|\le \int_0^\pi \frac{Rdt}{(R^2-1)^n}=\frac{\pi R}{R^2-1)^n}\to 0,
$$
as $R\to\infty$, while
$$
\lim_{R\to\infty}\int_{\gamma_R^1}\frac{dz}{(1+z^2)^n}=\int_{-\infty}^\infty\frac{dx}{(1+x^2)^n}.
$$
Hence $\int_{-\infty}^\infty\frac{dx}{(1+x^2)^n}=2\pi i\,
\mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg).$
We use the following fact.
Fact. If $f$ has a pole of order $m$ at $z=a$, then
$$
\mathrm{Res}(f,a)=\frac{1}{(m-1)!} \left((z-a)^mf(z)\right)^{(m-1)}_{z=a}
$$
This is straightforward since
$$
f(z)=a_{-m}(z-a)^{-m}+\cdots+a_{-1}(z-a)^{-1}+a_0+a_{1}(z-a)^{1}+\cdots
$$
and hence
$$
(z-a)^mf(z)=a_m+a_{-m+1}(z-a)^{1}\cdots+a_{-1}(z-a)^{m-1}+a_0(z-a)^{m}+\cdots
$$
and thus
$$
\big((z-a)^mf(z)\big)^{(m-1)}=(m-1)!a_{-1}+m!a_0(z-a)^1+\cdots
$$
and finally $\,\,\frac{1}{(m-1)!} \big((z-a)^mf(z)\big)^{(m-1)}_{z=a}=a_{-1}$.
In our case $f(z)=\frac{1}{(1+z^2)^n}$ has a pole of order $n$, and hence
$$
\mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg)=
\frac{1}{(n-1)!}
\left(
(z-i)^n \frac{1}{(1+z^2)^n}
\right)^{(n-1)}_{z=i}=\frac{1}{(n-1)!}
\left(\frac{1}{(z+i)^n}
\right)^{(n-1)}_{z=i} \\
=\frac{1}{(n-1)!}\cdot (-1)^{n-1}\cdot n\cdot(n+1)\cdots(2n-2)\cdot
\left(\frac{1}{(z+i)^{2n-1}}\right)_{z=i}\\
=(-1)^{n-1}\binom{2n-2}{n-1}\cdot\frac{1}{(2i)^{2n-1}}=\frac{-i}{2^{2n-1}}\binom{2n-2}{n-1}
$$
Finally
$$
\int_{-\infty}^\infty\frac{dx}{(1+x^2)^n}=2\pi i\,
\mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg)=2\pi i\,\frac{-i}{2^{2n-1}}\binom{2n-2}{n-1}=\frac{\pi}{2^{2n-2}}\binom{2n-2}{n-1}.
$$