The question is as follow:
$G$ is a group. $N$ is the smallest subgroup of G the contains {$ g^2 | g \in G$}. Prove that $N \triangleleft G$ and $G/N$ is abelian.
So my plan is to use the theorem that states that:
$G'\leq N \iff N\triangleleft G , G/N $ is abelian
so I have problems to show now that $G'\leq N$ any help is appreciated!.