Let $\mathfrak{so}(2n,\mathbb{C})$ be all the matrices in the form of $g=\begin{pmatrix}A & B\\ C & -A^T\end{pmatrix}$, where $B$ and $C$ are skew symmetric and $A,B,C$ are $n\times n$ matrices. Show that $\mathfrak{so}(2n,\mathbb{C})$ is a simple Lie algebra.
By some simple calculation I can deduce that if $r$ is a non-zero ideal of $\mathfrak{so}(2n,\mathbb{C})$ containing an element in the form $\begin{pmatrix}A & B\\ C & -A^T\end{pmatrix}$ then there must be an element in $r$ such that $B\neq 0,C\neq 0$. Also the elements $\begin{pmatrix}A & 0\\ 0 & -A^T\end{pmatrix}$ and $\begin{pmatrix}0 & \pm B\\ \pm C & 0\end{pmatrix}$ are in $r$. But how can I go ahead?