How can I calculate the following limit,
$$\lim_{x\to0}\frac{e^{-1/x^2}}x=0$$
If I plug $x=0$ I get the following,
$$f'(0)=\lim_{x\to0}\frac{e^{-1/0^2}}0=\infty$$
How can I calculate the following limit,
$$\lim_{x\to0}\frac{e^{-1/x^2}}x=0$$
If I plug $x=0$ I get the following,
$$f'(0)=\lim_{x\to0}\frac{e^{-1/0^2}}0=\infty$$
Let $x=1/u$. Then we have
$$\lim_{x\to0}\frac{e^{-1/x^2}}{x}=\lim_{u\to\pm\infty}\frac{e^{-u^2}}{1/u}$$
Now apply L'Hospital's rule to get
$$\lim_{u\to\pm\infty}\frac{e^{-u^2}}{1/u}=\lim_{u\to\pm\infty}e^{-u^2}=e^{-\infty}=0$$