Let $f\in\mathbb{F}[x]$ be a monic, irreducible polynomial of degree $d$.
We define $\mathbb{K}=\{g\in\mathbb{F}[x] \ | \ deg(g)<deg(f)\}$.
Let $g\in\mathbb{K}$, assume that $g\neq 0_\mathbb{F}$, prove that there exist a polynomial $q\in\mathbb{K}$ such that $g\cdot q=s\cdot f+1_\mathbb{F}$ for some polynomial $s\in\mathbb{F}[x]$.