Alternatively, we can also use the fact that if $a_n>0$ for all $n\ge1$ and the sequence $\frac{a_{n+1}}{a_n}$ converges in $[0,\infty]$, then
$$
\lim_{n\to\infty}a_n^{1/n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}
$$
(see this answer).
We have that
$$
a_n=\frac{(2n)!}{n^nn!}
$$
and
$$
\frac{a_{n+1}}{a_n}
=\frac{(2(n+1))!}{(n+1)^{n+1}(n+1)!}\cdot\frac{n^nn!}{(2n)!}
=\frac{2(n+1)(2n+1)}{(n+1)^2}\cdot\biggl(1-\frac1{n+1}\biggr)^n.
$$
The first term converges to $4$ and the second term converges to $1/e$. Hence,
$$
\lim_{n\to\infty}a_n^{1/n}=\frac4e.
$$