3

$$\lim_{n\to\infty}\sum_{k=1}^n\frac k{k^2+n^2}$$

I need to evaluate this limit, but I don't know how to start. Should i take $1/n^2$ out? Help required. Thank you.

Clement C.
  • 67,323

2 Answers2

2

Indeed, factor out $1/n^2$. This leaves you with $$\lim_{n\to\infty}\sum_{k=1}^n \frac{1}{n}\frac{(k/n)}{1+(k/n)^2}.$$ This resembles a Riemann sum. Under good conditions, we have $$\int_a^b f(x)\,dx=\lim_{n\to\infty}\sum_{k=1}^n \frac{b-a}{n}f\left(a+k\frac{b-a}{n}\right).$$ From this, we conclude that $a=0$, $b=1$, and $f(x)=\frac{x}{x^2+1}$, so we get $$\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{k^2+n^2}=\int_0^1\frac{x}{1+x^2}\,dx.$$

Plutoro
  • 22,730
  • 3
  • 41
  • 71
2

Hint: Rewrite $$ \sum_{k=1}^n\frac k{k^2+n^2} = \frac{1}{n}\sum_{k=1}^n\frac{k}{\frac{k^2}{n}+n} = \frac{1}{n}\sum_{k=1}^n\frac{\frac{k}{n}}{\frac{k^2}{n^2}+1} $$ and recognize a Riemann sum for $\int_0^1 f(x)\, dx$, where $f\colon[0,1]\to\mathbb{R}$ is defined by $$ f(x) = \frac{x}{x^2+1}. $$ (This is Riemann integrable on $[0,1]$, since continuous.)

Clement C.
  • 67,323