0

I am trying to find the Taylor series for $f(x)=ln(1+x)$ centered at $x=0$

So I have calculated some of the derivatives,

\begin{align} &f^{(1)}(x)=(1+x)^{-1} , f^{(1)}(0)=1\\ &f^{(2)}(x)=-(1+x)^{-2}, f^{(2)}(0)=-1\\ &f^{(3)}(x)=2(1+x)^{-3}, f^{(3)}(0)=2\\ &f^{(4)}(x)=-6(1+x)^{-4}, f^{(4)}(0)=-6\\ \end{align}

So then, $f^{(n)}(0)=(-1)^{n-1}(n-1)!$

But from here how do I find its Taylor series?

fr14
  • 717
  • 3
  • 10
  • 23

1 Answers1

0

Perhaps this is more enlightening:

$$\ln(1+x)=\int_0^x\frac1{1+t}\ dt=\int_0^x\sum_{n=0}^\infty(-1)^nt^n\ dt=\sum_{n=1}^\infty(-1)^{n+1}\frac{x^n}n$$

where we used the geometric series.


However, if you are looking for the method through Taylor expansions, then recall that

$$\begin{align}\ln(1+x)=f(x)&=f(0)+\sum_{n=1}^\infty\frac{f^{(n)}(0)}{n!}x^n\\&=\sum_{n=1}^\infty\frac{(-1)^{n+1}(n-1)!}{n!}x^n\\&=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}x^n\end{align}$$