I am trying to find the Taylor series for $f(x)=ln(1+x)$ centered at $x=0$
So I have calculated some of the derivatives,
\begin{align} &f^{(1)}(x)=(1+x)^{-1} , f^{(1)}(0)=1\\ &f^{(2)}(x)=-(1+x)^{-2}, f^{(2)}(0)=-1\\ &f^{(3)}(x)=2(1+x)^{-3}, f^{(3)}(0)=2\\ &f^{(4)}(x)=-6(1+x)^{-4}, f^{(4)}(0)=-6\\ \end{align}
So then, $f^{(n)}(0)=(-1)^{n-1}(n-1)!$
But from here how do I find its Taylor series?