This is a continuation of my previous question here: Homeomorphism for computing homology/cohomology of unit tangent bundle I am trying to calculate the homology and cohomology of the space $$T=\{(v,w)\in S^n \times S^n \mid v \cdot w = 0 \}$$ which is the unit tangent bundle, or sometimes called the Stiefel 2-manifold $V_2(\mathbb{R}^{n+1})$. Instead of using a Gysin sequence (The circle bundle of $S^2$ and real projective space) or determining the cell structure of $T$ based on the cell structure of $SO(n)$ (see previous question), the goal is to define $$T_+=\{(v,w) \in T \mid v_0 \ge 0, \ \ T_-=\{(v,w) \in T \mid v_0 \le 0 \}$$ where $v_0$ is the first coordinate of $v$ in $(v,w)$. Then I am supposed to prove that $$T_+ \cong S_+ \times S^{n−1}, \ \ T_- \cong S_- \times S^{n-1}$$ where $S_+=\{v\in S^n \mid v_0 \ge 0\}$ and $S_-=\{v\in S^n \mid v_0 \le 0\}$. This proof is done in the previous question.
This might be obvious, but from here I don't see how having these homeomorphisms gives us an alternate technique for homology/cohomology calculations.
Update (3/17/17): My first thought was obviously to use Mayer-Vietoris.
\begin{eqnarray*}
H_{n+1}(T) &\rightarrow& H_n(T_+ \cap T_-) \rightarrow H_n(T_+) \oplus H_n(T_-) \rightarrow H_n(T) \rightarrow H_{n-1}(T_+ \cap T_-) \rightarrow H_{n-1}(T_+) \oplus H_{n-1}(T_-) \\
\cdots &\rightarrow& H_1(T_+) \oplus H_1(T_-) \rightarrow H_1(T) \rightarrow H_0(T_+ \cap T_-) \rightarrow H_0(T_+) \oplus H_0(T_-) \rightarrow H_0(T) \rightarrow 0.
\end{eqnarray*}
Since $T_+ \cap T_- \simeq S^{n-1}$ and $T_{\pm} \simeq S_{\pm} \times S^{n-1}$, we have
\begin{eqnarray*}
H_{n+1}(T) &\overset{\partial_*}\rightarrow& H_n(S^{n-1}) \overset{\iota_*}\rightarrow H_n(S_+ \times S^{n-1}) \oplus H_n(S_- \times S^{n-1}) \overset{1-f_*}\rightarrow H_n(T) \overset{\partial_*}\rightarrow H_{n-1}(S^{n-1}) \\
&\overset{\iota_*}\rightarrow& H_{n-1}(S_+ \times S^{n-1}) \oplus H_{n-1}(S_- \times S^{n-1}) \cdots \overset{\iota_*}\rightarrow H_1(S_+ \times S^{n-1}) \oplus H_1(S_- \times S^{n-1}) \\
&\overset{1-f_*}\rightarrow& H_1(T) \overset{\partial_*}\rightarrow H_0(S^{n-1}) \overset{\iota_*}\rightarrow H_0(S_+ \times S^{n-1}) \oplus H_0(S_- \times S^{n-1}) \overset{1-f_*}\rightarrow H_0(T) \rightarrow 0.
\end{eqnarray*}
So take for example $n = 4$. Then $H_i(S^{n-1}) = H_i(S^3)$ which is only nontrivial for $i = 0, 3$. Also $H_i(S_+ \times S^{n-1}) \simeq H_i(S_+) \times H_i(S^{n-1}) = H_i(S^{n-1}) = H_i(S^3)$ since $S_+$ is contractible. So
\begin{eqnarray*}
0 &\rightarrow & H_{4}(T) \overset{\partial_*}\hookrightarrow \mathbb{Z} \overset{\iota_*}\hookrightarrow \mathbb{Z} \oplus \mathbb{Z} \overset{1-f_*}\rightarrow H_3(T) \rightarrow 0 \rightarrow 0 \oplus 0 \rightarrow H_2(T) \rightarrow 0 \rightarrow 0 \rightarrow H_1(T) \overset{\partial_*}\hookrightarrow \mathbb{Z} \\
&\overset{\iota_*}\hookrightarrow& \mathbb{Z} \oplus \mathbb{Z}
\overset{1-f_*}\rightarrow H_0(T) \rightarrow 0.
\end{eqnarray*}
From here, $H_2(T) = 0$. Since $\iota_*$ is injective, by exactness we get $\partial_*: H_1(T) \rightarrow \mathbb{Z}$ is the zero map. Thus, $H_1(T) = 0$, but that is not correct. (I think $H_1(T)$ is supposed to be $\mathbb{Z}_2$.) Also, how do we determine $f_*$? Should $f_*$ sometimes be multiplication by 2 and sometimes be 0 depending on whether $n$ is even or odd? Is the following passage from Hatcher's VB text relevant to the explanation? (And if so, could someone further explain it? I don't really understand what it's saying).