3

Can somebody explain why the sum is $\frac{-\pi^2}{12}$. Can you somehow use the zeta function? If so, how?

jubueche
  • 145

2 Answers2

8

Let's add them together:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}+\sum_{n=1}^{\infty} \frac{1}{n^2}=\sum_{n=1}^{\infty} \frac{(-1)^n+1}{n^2}$$

and for odd $n$, $(-1)^n+1=0$ and for even $n$, $(-1)^n+1=2$, so this rewrites to

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}+\sum_{n=1}^{\infty} \frac{1}{n^2}=\sum_{n=1}^{\infty} \frac{2}{(2n)^2}$$

which simplifies to

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}+\sum_{n=1}^{\infty} \frac{1}{n^2}=\frac12\sum_{n=1}^{\infty} \frac{1}{n^2}=\frac{\pi^2}{12}$$

Thus,

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}=\frac{\pi^2}{12}-\frac{\pi^2}{6}=-\frac{\pi^2}{12}$$

2

$$\sum_{i=1}^\infty \dfrac{(-1)^n}{n^2}$$

$$=\sum_{i=1}^\infty \dfrac{1}{(2n)^2}-\sum_{i=1}^\infty \dfrac{1}{(2n-1)^2}$$

$$=\sum_{i=1}^\infty \dfrac{1}{(2n)^2}-\big(\sum_{i=1}^\infty \dfrac{1}{n^2}-\frac14\sum_{i=1}^\infty \dfrac{1}{n^2}\big)$$

$$=\sum_{i=1}^\infty \dfrac{1}{(2n)^2}-\frac34\sum_{i=1}^\infty \dfrac{1}{n^2}$$

$$=\frac14\sum_{i=1}^\infty \dfrac{1}{n^2}-\frac34\sum_{i=1}^\infty \dfrac{1}{n^2}$$

$$=-\frac12\sum_{i=1}^\infty \dfrac{1}{n^2}$$

JMP
  • 21,771