-1

Let $A, B, C$ be invertible $n \times n$ matrices. Prove that $$(A^T B)^{-1} = B^{-1}(A^{-1})^T$$

I'm confused on how to start the problem and was wondering if the answer ends up being $I$?

2 Answers2

4

Hint:

$$(CD)^{-1}=D^{-1}C^{-1}$$ $$(A^T)^{-1}=(A^{-1})^T$$

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149
0

Just multiply: $$ (A^TB)(B^{-1}(A^{-1})^T)= A^T(BB^{-1})(A^{-1})^T= A^T(A^{-1})^T= (A^{-1}A)^T=I^T=I $$

egreg
  • 238,574