Let $(a_n)$ be a real sequence.
Show that $a_n>0$ and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=L$ implies that $\lim_{n\to\infty} a_{n}^{1/n}=L $.
Is it legitimate to use $$\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=\frac{\lim_{n\to\infty} a_{n+1}}{\lim_{n\to\infty} {a_n}}=L $$
which would imply that $$\lim_{n\to\infty} a_{n+1}=L \lim_{n\to\infty} {a_n}$$
which, used recursively would lead to
$$\lim_{n\to\infty} a_{n}= \lim_{n\to\infty} L^n a_0$$
and thus using $\lim_{n\to\infty} a^{1/n}=1$ for all $a \in \mathbb{R}$ with $a>0$
$$\lim_{n\to\infty} a_{n}^{1/n}= \lim_{n\to\infty} L a_0^{1/n}=L$$
The steps I am most unsure about are the first and the last step.