Let $L=\mathbb{Q}(\sqrt[3]{2})$ and let $f(x)=x^3-2$ be the minimal polynomial of $\sqrt[3]{2}$ over $\mathbb{Q}$. Consider $\{e_1,e_2,e_3\}:=\{1,x,x^2\}$ be a basis of $L$ over $\mathbb{Q}$. Let $\theta_1 = \sqrt[3]{2},\theta_2 = w\sqrt[3]{2}$ and $\theta_3=w^2\sqrt[3]{2}$ be the roots of $f$ (in $\mathbb{C}$ as a splitting field of $f$) where $w$ is a complex cube root of $1$. Then the discriminant is the square of the determinant of the matrix $\big(\sigma_i(e_j)\big)_{ij}$ where $\sigma_i$ are $\mathbb{Q}$-embeddings.
We know that the $i$-th embedding takes $x$ to $\theta_i$, i.e. $\sigma_i(1)=1$, $\sigma_i(x)=\theta_i$ and $\sigma_i(x^2)=\theta_i^2$. Clearly the matrix $\big(\sigma_i(e_j)\big)_{ij} = \big(\theta_i^{j-1}\big)$ is Vandermonde whose determinant satisfies
\begin{equation}
\det\big(\theta_i^{j-1}\big)^2 = (\theta_1-\theta_2)^2(\theta_1-\theta_3)^2(\theta_2-\theta_3)^2 = -108.
\end{equation}
Using $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})} = \mathbb{Z}[\sqrt[3]{2}]$, we obtain the discriminant.