Given Co-Ordinate projections in ${\mathbb{R}^2}$
\begin{gathered}
x:{\mathbb{R}^2} \to \mathbb{R},x\left( p \right) = u \hfill \\
y:{\mathbb{R}^2} \to \mathbb{R},y\left( p \right) = v \hfill \\
\end{gathered}
point $p \in {\mathbb{R}^2}$ can now be written like
$$p = \left( {u,v} \right)$$.
Differentials from these Co-Ordinate functions at point $p$
\begin{gathered}
d{x_p} = {T_p}{\mathbb{R}^2} \to \mathbb{R} \hfill \\
d{y_p} = {T_p}{\mathbb{R}^2} \to \mathbb{R} \hfill \\
\end{gathered}
are Co-Vectors, that means $d{x_p},d{y_p} \in T_p^*{\mathbb{R}^2}$.
For every Tangent-Vector like $\xi \in {T_p}{\mathbb{R}^2}$, we have
$$\xi = a\frac{\partial }{{\partial x}} + b\frac{\partial }{{\partial y}}$$
$a,b \in \mathbb{R}$. Now
$$d{x_p}\left( \xi \right) = d{x_p}\left( {a\frac{\partial }{{\partial x}} + b\frac{\partial }{{\partial y}}} \right) = d{x_p}\left( {a\frac{\partial }{{\partial x}}} \right) + d{x_p}\left( {b\frac{\partial }{{\partial y}}} \right) = a\frac{{\partial x}}{{\partial x}} + b\frac{{\partial x}}{{\partial y}} = a$$
$$d{y_p}\left( \xi \right) = d{y_p}\left( {a\frac{\partial }{{\partial x}} + b\frac{\partial }{{\partial y}}} \right) = d{y_p}\left( {a\frac{\partial }{{\partial x}}} \right) + d{y_p}\left( {b\frac{\partial }{{\partial y}}} \right) = a\frac{{\partial y}}{{\partial x}} + b\frac{{\partial y}}{{\partial y}} = b$$.
That is: $d{x_p},d{y_p} \in T_p^*{\mathbb{R}^2}$ are linear real-valued functions. And from this point of view we are calculating with real numbers.
So we can divide them like $\frac{{d{y_p}}}{{d{x_p}}}$ and there is nothing to
worry about. If $f:{\mathbb{R}^2} \to \mathbb{R},y = f\left( x \right)$
for a differentiable function, we have
$$\frac{{d{y_p}}}{{d{x_p}}} = f'\left( p \right)$$
Nothing, but a real number.