We have $m,n \in \mathbb{N}$ and $gcd(m,n) = 1.$
How to prove that $gcd(m+n,m-n) = 1$ or $2$?
We have $m,n \in \mathbb{N}$ and $gcd(m,n) = 1.$
How to prove that $gcd(m+n,m-n) = 1$ or $2$?
Hint: $\gcd(m+n,m-n) \mid \gcd\big((m+n)+(m-n), (m+n)-(m-n)\big)=\gcd(2m,2n)\,$.