1

Apologies, it has been many years since I took a math course so I am forgetting many things including terminology, but I have a question about the following:

$$ M_p = \left(\frac{1}{n} \sum_{i=1}^n a_i^p \right) ^ \frac{1}{p}$$

Where, I am under the impression that

$$ \lim_{p\to 0} M_p $$

is

$$ M_0= (a_1...a_n) ^ \frac{1}{n}$$

the geometric mean.

I am wondering if somebody could help me to recall how I would solve the limit? Step by step is appreciated.

Mark Viola
  • 179,405
Joe
  • 11
  • http://math.stackexchange.com/q/282271/, http://math.stackexchange.com/q/492834/, http://math.stackexchange.com/q/13125/ – Jonas Meyer Mar 10 '17 at 07:01

2 Answers2

3

Let $M_p=\left(\frac1n\sum_{i=1}^n(a_i)^p\right)^{1/p}$, where we assume that $a_i> 0$ for all $i$. Then, we can write

$$\log(M_p)=\frac1p\log\left(\frac1n\sum_{i=1}^n(a_i)^p\right) \tag1$$

Taking the limit of $(1)$ as $p\to 0$ and exploiting L'Hospital's Rule yields

$$\begin{align} \lim_{p\to 0}\log(M_p)&=\lim_{p\to 0}\frac1p\log\left(\frac1n\sum_{i=1}^n(a_i)^p\right)\\\\ &=\lim_{p\to 0}\frac{\frac1n\sum_{i=1}^n(a_i)^p\log(a_i)}{\frac1n\sum_{i=1}^n(a_i)^p}\\\\ &=\frac1n\sum_{i=1}^n\log(a_i)\\\\ &=\log\left(\prod_{i=1}^na_i^{1/n}\right)\tag 1 \end{align}$$

whereupon we find

$$\lim_{p\to 0}M_p=e^{\log\left(\prod_{i=1}^na_i^{1/n}\right)}=\prod_{i=1}^na_i^{1/n}$$

as was to be shown!

Mark Viola
  • 179,405
  • 1
    I think this proof requires that every $a_i$ is strictly positive, otherwise we won't have $$\lim_{p \to 0}\left(\frac{1}{n}\sum_{i=1}^{n}a_i^p\right) = 1,$$ and therefore the limit of the log won't be zero, and L'Hospital's rule will not apply. Of course the case where one or more $a_i$ is zero can be easily handled separately. –  Mar 10 '17 at 07:05
  • 1
    @Bungo Yes, I've edited. Thank you for the comment! Much appreciative. -Mark – Mark Viola Mar 10 '17 at 07:07
0

$$ \lim_{p\to 0} M_p(a)=\lim_{p\rightarrow0}\left(1+\sum_{i=1}^n\frac{a_i^p-1}{n}\right)^{\frac{1}{p}}= \lim_{p\rightarrow0}\left(1+\sum_{i=1}^n\frac{a_i^p-1}{n}\right)^{\frac{1}{\sum\limits_{i=1}^n\frac{a_i^p-1}{n}}\cdot\sum\limits_{i=1}^n\frac{a_i^p-1}{np}}=$$ $$=e^{\frac{1}{n}\lim\limits_{p\rightarrow0}\sum\limits_{i=1}^n\frac{a_i^p-1}{p}}=e^{\frac{1}{n}\sum\limits_{i=1}^n\ln{a_i}}=(a_1...a_n) ^ \frac{1}{n}.$$