If you are concerned by solving for $x$ equation $$\text{erf}(x)=a$$ you could be interested by this post where I proposed as an approximation
$$\mathrm{erf}\!\left(x\right)\approx\sqrt{1-\exp\Big(-\frac 4 {\pi}\,\frac{1+\alpha\, x^2}{1+\beta\, x^2}\,x^2 \Big)}$$ where $$\alpha=\frac{10-\pi ^2}{5 (\pi -3) \pi }\qquad \text{and}\qquad \beta=\frac{120-60 \pi +7 \pi ^2}{15 (\pi -3) \pi }$$
which then reduces to solve $$\log(1-a^2)=-\frac 4 {\pi}\,\frac{1+\alpha \,x^2}{1+\beta\, x^2}\,x^2$$ which is a quadratic equation in $x^2$.
For illustration purposes, I give below a few values
$$\left(
\begin{array}{ccc}
a & \text{erf}^{-1}(a) & \text{approx} \\
0.05 & 0.044340 & 0.044340 \\
0.10 & 0.088856 & 0.088856 \\
0.15 & 0.133727 & 0.133727 \\
0.20 & 0.179143 & 0.179143 \\
0.25 & 0.225312 & 0.225312 \\
0.30 & 0.272463 & 0.272463 \\
0.35 & 0.320858 & 0.320858 \\
0.40 & 0.370807 & 0.370807 \\
0.45 & 0.422680 & 0.422681 \\
0.50 & 0.476936 & 0.476937 \\
0.55 & 0.534159 & 0.534161 \\
0.60 & 0.595116 & 0.595120 \\
0.65 & 0.660854 & 0.660861 \\
0.70 & 0.732869 & 0.732883 \\
0.75 & 0.813420 & 0.813449 \\
0.80 & 0.906194 & 0.906253 \\
0.85 & 1.017900 & 1.018030 \\
0.90 & 1.163090 & 1.163390 \\
0.95 & 1.385900 & 1.386820 \\
0.96 & 1.452220 & 1.453450 \\
0.97 & 1.534490 & 1.536190 \\
0.98 & 1.644980 & 1.647550 \\
0.99 & 1.821390 & 1.825990
\end{array}
\right)$$