Let $\star$ be any operation in the sequence of hyperoperations $(\text{Succ},+,\times,\uparrow,\uparrow\uparrow,\ldots)$, and consider the $\star$-factorial function defined as follows on the positive integers:
$$\begin{align}f_\star(n) &:= n\star(n-1)\star(n-2)\ldots \star 1\quad (n\text{ operands}) \end{align}$$
where a right-to-left order of evaluation is assumed; e.g. $f_\uparrow(3) = 3\uparrow 2\uparrow 1 = 3\uparrow (2\uparrow 1)$.
(With appropriate treatment for an argument of $n=0$, the definition could be extended to the nonnegative integers, but it would not be useful to do so in the present context.)
For each $\star$ operation, we want to compare the growth-rate of $f_\star$ to the following function $g_\star$: $$\begin{align}g_\star(n) &:= b\star' n\\ &= b\star b\star b\ldots \star b\quad (n+1\text{ operands})\quad\text{ if }\star =\text{Succ}\\ &= b\star b\star b\ldots \star b\quad (n\text{ operands})\quad\text{ if }\star \in(+,\times,\uparrow,\uparrow\uparrow,\ldots) \end{align}$$ where $\star'$ is the hyperoperation just after $\star$, and $b\ge 2$ is some given fixed integer. We use the concept of eventual domination; i.e., for two functions $f,g$ on the positive integers, the notation $f<^*g$ (resp. $f>^*g$) means that $f(n)<g(n)$ (resp. $f(n)>g(n)$) for all sufficiently large $n$.
Examples
$$\begin{align} f_\text{Succ}(n)&=n & \color{blue}{<^*} \ \ g_\text{Succ}(n)=b+n\quad\quad\quad\quad\text{ if }b\ge 2\\ f_+(n)&=\frac{n(n+1)}{2} & \color{red}{>^*} \ \ g_+(n)=b\times n\quad\quad\quad\quad\text{ if }b\ge 2\\ f_\times(n)&=n! & \color{red}{>^*} \ \ g_\times(n)=b\uparrow n\quad\quad\quad\quad\text{ if }b\ge 2\\ f_\uparrow(n)&=n^{(n - 1)^{(n - 2)^{\cdots^1}}} & \color{blue}{<^*} \ \ g_\uparrow(n)=b\uparrow\uparrow n\quad\quad\quad\quad\text{ if }b\ge 3 \end{align}$$
The first two examples above are easily worked out, while the third example is a well-known result for the standard factorial function. The fourth example follows from properties of the exponential factorial function proved by @Deedlit. (Note that in the fourth example, domination would occur in the reverse order if $b=2$; i.e., $f_\uparrow(n) \color{red}{>^*} 2\uparrow\uparrow n$.)
Question 1: Is it the case that if $b=3$ then $f_\star \color{blue}{<^*} g_\star$ for all $\star\in(\uparrow,\uparrow\uparrow,\ldots)$? I.e., in terms of Knuth's uparrows, do we have $f_{\uparrow^k}(.)\color{blue}{<^*}3\uparrow^{k+1}(.)$ for all $k\ge 1$?
Question 2: If Question 1 has a negative answer, then is it the case that for each $\star\in(\uparrow,\uparrow\uparrow,\ldots)$ there exists a $b$ (depending on $\star$) such that $f_\star \color{blue}{<^*} g_\star$? I.e., is there, for each $k\ge 1$, a $b_k$ such that $f_{\uparrow^k}(.)\color{blue}{<^*}b_k\uparrow^{k+1}(.)$?
\ll
and\gg
for $\ll$ and $\gg$. – Simply Beautiful Art Mar 08 '17 at 23:07Inductive step:
$$f_\star(n+1)=(n+1)\star f_\star(n)<(n+1)\star g_\star(n)<(n+1)\star g_\star(n+1)<g_\star(n+2)$$
So this proof shows that $f_\star(n)\ll g_\star(n+1)$, though it's not as immediate for the actual question...
– Simply Beautiful Art Mar 08 '17 at 23:08