Consider the integral
$$2^n\int_{0}^{1}{x^{2^n-1} \over 1+x^{2^n}}\ln{(-\ln{x})}\mathrm dx=-{2n+1\over 2}\cdot\ln^2{2}\tag1$$ $n\ge0$
An attempt:
$u=x^{2^n}$ $\implies$ $du=2^n\cdot x^{2^n-1}dx$
$(1)$ becomes
$$\int_{0}^{1}{\mathrm du\over 1+u}\cdot\ln{\left(-{1\over 2^n}\ln{u}\right)}\tag2$$
Another sub:
$v=-{1\over 2^n}\ln{u}$ $\implies$ $-2^nudv=du$
$(2)$ becomes
$$2^n\int_{0}^{\infty}{\mathrm dv\over 1+e^{2^nv}}\cdot\ln{v}\tag3$$
Maybe I could apply geometric series and integrate term by term?
How else can we confirm the result of $(1)?$