3

Let $p$ be an odd prime and $d$ be a natural number such that $d \mid (p-1)$. For $a \in Z$ coprime with p, show that $x^d \equiv a$ mod $p$ if and only if $a^\frac{p-1}{d} \equiv 1$ mod $p$. I have no idea about this $x^d \equiv a$ mod p.

1 Answers1

3

Assumptions:

  • $p$ is prime.
  • $d$ is a positive integer such that $d \mid (p-1)$.
  • $a$ is an integer, $a$ not a multiple of $p$.

To be shown:

  • $x^d \equiv a \pmod{p}$, for some integer $x$, if and only if $a^\frac{p-1}{d} \equiv 1 \pmod{p}$.

First we show $x^d \equiv a \pmod{p}$, for some integer $x$, implies $a^\frac{p-1}{d} \equiv 1 \pmod{p}$.

Thus, suppose there is an integer $x$ such that $x^d \equiv a \pmod{p}$.

Since $a,p$ are relatively prime, $x^d \equiv a \pmod{p}$ implies $x,p$ are relatively prime.

Then

\begin{align*} a^\frac{p-1}{d} &\equiv (x^d)^\frac{p-1}{d} \pmod{p}\\[6pt] &\equiv x^{p-1} \pmod{p}\\[6pt] &\equiv 1 \pmod{p}\\[6pt] \end{align*}

as was to be shown.

Next we show $a^\frac{p-1}{d} \equiv 1 \pmod{p}$ implies $x^d \equiv a \pmod{p}$, for some integer $x$.

Thus, suppose $a^\frac{p-1}{d} \equiv 1 \pmod{p}$.

Since $p$ is prime, there exists a primitive element, mod $p$. Let $y$ be such an element.

Since $y$ is a primitive element, mod $p$, the multiplicative order, mod $p$, of $y$ is $p-1$.

It follows that the $p-1$ elements $1,y,y^2,...y^{p-2}$ represent, in some order, all nonzero residues, mod $p$. In particular, there is an integer $k \in \{0,1,...,p-2\}$ such that $y^k \equiv a \pmod{p}$.

Then \begin{align*} &a^\frac{p-1}{d} \equiv 1 \pmod{p}\\[6pt] \implies\; &(y^k)^\frac{p-1}{d} \equiv 1 \pmod{p}\\[6pt] \implies\; &(p-1)\; \text{ divides} \left(k{\small{\left(\frac{p-1}{d}\right)}}\right)\\[6pt] \implies\; & {\frac {k{\large{\left(\frac{p-1}{d}\right)}}} {p-1}} \in \mathbb{Z}^+ \\[6pt] \implies\; &{\frac{k}{d}} \in \mathbb{Z}^+\\[6pt] \implies\; &k = jd,\text{ for some }j \in \mathbb{Z}^+\\[6pt] \end{align*}

Let $x = y^j$. Then

\begin{align*} x^d &\equiv (y^j)^d \pmod{p}\\[6pt] &\equiv y^{jd} \pmod{p}\\[6pt] &\equiv y^k \pmod{p}\\[6pt] &\equiv a \pmod{p}\\[6pt] \end{align*}

thus, we have an integer $x$ such that $x^d \equiv a \pmod{p}$, as was to be shown.

This completes the proof.

quasi
  • 58,772