Consider the function $$ f: (-1, 1) \rightarrow \mathbb{R}, \hspace{15px} f(x) = \sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{x^n}{n} $$
I am required to show that the derivative of this function is $$ f'(x) = \frac{1}{1+x} $$
I have attempted to do this using the elementary definition of a limit, as follows: $$ f'(x) = \lim_{a \rightarrow x} \left( \frac{f(a)-f(x)}{a-x} \right) = \lim_{a \rightarrow x} \left( \frac{ \sum_{n=1}^{\infty} \left[ (-1)^{n+1} \cdot \frac{a^n}{n} \right]- \sum_{n=1}^{\infty}\left[ (-1)^{n+1} \cdot \frac{x^n}{n} \right]}{a-x} \right) \\ = \lim_{a \rightarrow x} \left( \frac{ \sum_{n=1}^{\infty} \left[ (-1)^{n+1} \cdot \frac{a^n - x^n}{n} \right]}{a-x} \right) $$
but I am unsure of how to proceed from here (assuming my approach is correct. Can someone help me to show this?