Related : Can absolute convergent series be expressed as sum of two series?
Let $E$ be a countable subset of $(a,b)$ in $\mathbb{R}$.
Let $x_n$ enumerate $E$.
Now, fix $m\in \mathbb{N}$.
Let $\{p_i\}$ be a sequence in $(x_m,b)$ such that $p_i \rightarrow x_m$.
Let $I_i = \{n\in \mathbb{N} | x_n \in (x_m,p_i)\}$
Let $\sum c_n$ be a absolutely convergent series.
Then, $\sum_{n\in I_i} c_n$ is well defined and it exists.
Here, how do I prove that $\lim_{i\to\infty} (\sum_{n\in I_i} c_n ) = 0$??