assume $c > b$
Also gcd $(a, 1 + a + ... + a^b) = 1$
Let $x = (a^c - 1)/(a-1) = 1 + a + a^2 + ... + a^{c-1}$
Let $y = (a^b - 1)/(a-1) = 1 + a + a^2 + ... + a^{b-1}$
$gcd(x,y) = gcd(x-y, y) = gcd((a^b + ... + a^{c-1}), y) = gcd ((a^b(1 + a + ... + a^{c-b-1}), y) = gcd((1 + a + ... + a^{c-b-1}), y)$
as we keep doing, we get $gcd(x,y) = gcd((1 + a + ... + a^{k-1}), (1 + a + ... + a^{b-1}))$ with $k < b$
eventually ending up with $gcd(1 + a + ... + a^m, a^n) = 1$ for some integer $m$ and $n$.
Therefore there is no common factor between $x$ and $y$.