There's actually a general rule:
If $f(0)=1$ and $f'(0)=0$ then $$\lim_{n\to\infty} f\left(\frac 1n\right)^n=1.$$
Proof: First, note that $n\left(f\left(\frac{1}{n}\right)-1\right)\to f'(0)=0$. Then, using:
$$ f\left(\frac{1}{n}\right)^n=\left(1+\left(f\left(\frac{1}{n}\right)-1\right)\right)^n=1+\sum_{k=1}^{n}\binom{n}{k}\left(f\left(\frac{1}{n}\right)-1\right)^k$$ and that $\binom{n}{k}\leq n^k$, you have:
$$\left|f\left(\frac{1}{n}\right)^n-1\right|<\sum_{k=1}^{n}\left|n\left(f\left(\frac{1}{n}\right)-1\right)\right|^k\tag{1}$$
When $|n(f(1/n)-1)|<\epsilon<1$ then the right side is bounded above by:
$$\sum_{k=1}^{\infty} \epsilon^k =\frac{\epsilon}{1-\epsilon}$$
Since $n(f(1/n)-1)\to 0$, this means the right side or (1) converges to zero, and thus $f(1/n)^n\to 1.$
Then let $f(x)=\frac{(1+rx)}{(1+x)^r}$. Then $f(0)=1$ and $f'(x)=\frac{r(1+x)-r(1+rx)}{(1+x)^{r+1}}=\frac{(r-r^2)x}{(1+x)^{r+1}}$ and hence $f'(0)=0$.