If we consider $(\mathbb{Z}/120\mathbb{Z})^{\times}$ ?
Using the CRT we have : $(\mathbb{Z}/120\mathbb{Z})^{\times} \simeq (\mathbb{Z}/2^3\mathbb{Z})^{\times} \ \times (\mathbb{Z}/3\mathbb{Z})^{\times} \ \times (\mathbb{Z}/5\mathbb{Z})^{\times}$
By other properties $(\mathbb{Z}/120\mathbb{Z})^{\times}\simeq \mathbb{Z}/2\mathbb{Z}\ \times\mathbb{Z}/2\mathbb{Z}\ \times \mathbb{Z}/2\mathbb{Z}\ \times \mathbb{Z}/4\mathbb{Z}$
But we know that $(\mathbb{Z}/2^3\mathbb{Z})^{\times}$ is not cyclic and moreover $\gcd(2,2,2,4)\neq 1$ so the product cannot be a cyclic group. Does that mean that $(\mathbb{Z}/120\mathbb{Z})^{\times}$ is not cyclic too ?
Thanks in advance !