2

I want to calculate

$ \lim_{n \to \infty }{\frac{{[n(n+1)(n+2)...(2n-1)]}^\frac1n}n} $

using

$$\int_0^1 f(x)\,dx=\lim_{n\to\infty}\frac1n \sum_{k=1}^n f\left(\frac{k}n\right)$$

I know I have to convert $\frac nk$ to $x$, but I am confused since all the factors are multiplied together. Should I use $\log$?

1 Answers1

2

$$ \begin{align} &\lim_{n\to\infty}\frac{{[n(n+1)(n+2)...(2n-1)]}^{1/n}}n\\ &=\lim_{n\to\infty}{\left[1\left(1+\frac1n\right)\left(1+\frac2n\right)\cdots\left(2-\frac1n\right)\right]}^{1/n}\\ &=\exp\left[\lim_{n\to\infty}\frac1n\sum_{k=0}^{n-1}\log\left(1+\frac kn\right)\right]\\ &=\exp\left[\int_0^1\log(1+x)\,\mathrm{d}x\right]\\ \end{align} $$

robjohn
  • 345,667