Let $G$ be an infinite group. Suppose that $H, C, D \leq G$ where $C$ and $D$ are $H$-invariant.
If $d\in D$ such that $dHd^{-1}\leq HC$ and $dCd^{-1}=C$. I need to show that $d\in N_G(HC)$
Firstly, let $x\in d(HC)d^{-1}$ then $x =dhcd^{-1}$ where $h\in H$ and $c\in C$. Now $x= dhd^{-1}dcd^{-1} \in HC$ since $dhd^{-1} \in dHd^{-1}\leq HC$ and $dcd^{-1} \in d(HC)d^{-1} \leq HC$. Thus $d(HC)d^{-1} \leq HC$
I need to show the other inclusion $HC \leq d(HC)d^{-1}$ but I am running into problems.