What I know so far:
We know by the definition of congruence that $n$ divides $ab-ac$. So, there exists an integer $k$ such that $a(b-c)=kn$, and since $d=(a,n)$ we know that $a=ds$ and $n=dt$ from some integers $s$ and $t$. Then substituting for $a$ and $n$, we see that $ds(b-c)=k(dt)$.