To expand on the answer left by @JackD'Aurizio, we let $G_n(x)$ be the sequence of functions given by
$$G_n(x)=\int_0^n s^{x-1}\left(1-\frac{s}{n}\right)^n\,ds$$
We will show without using the Dominated Convergence Theorem that $\lim_{n\to \infty}G_n(x)=\Gamma(x)$ by showing that
$$\lim_{n\to \infty}\int_0^n s^{x-1}e^{-s}\left(1-e^s\left(1-\frac{s}{n}\right)^n\right)=0 \tag 1$$
To do this, we appeal to the analysis in THIS ANSWER to obtain bounds for the integrand in $(1)$. Proceeding, we have
$$\begin{align}
1-e^s\left(1-\frac{s}{n}\right)^n &\le 1-\left(1+\frac{s}{n}\right)^n\left(1-\frac{s}{n}\right)^n\\\\
&=1-\left(1-\frac{s^2}{n^2}\right)^n\\\\
&\le 1-\left(1-\frac{s^2}{n}\right)\\\\
&=\frac{s^2}{n}
\end{align}$$
where Bernoulli's Inequality was used to arrive at the last inequality. Similarly, we see that
$$\begin{align}
1-e^s\left(1-\frac{s}{n}\right)^n &\ge 1-e^se^{-s}\\\\
&=0
\end{align}$$
Therefore, applying the squeeze theorem yields to coveted limit
$$\lim_{n\to \infty}\int_0^n s^{x-1}e^{-s}\left(1-e^s\left(1-\frac{s}{n}\right)^n\right)=0$$
which implies $\lim_{n\to \infty}G_n(x)=\Gamma(x)$.
Integrating by parts repeatedly the integral representation of $G_n(x)$ reveals
$$G_n(x)=\frac{n^x\,n!}{x(x+1)(x+2)\cdots (x+n)}$$
so that
$$\bbox[5px,border:2px solid #C0A000]{\Gamma(x)=\lim_{n\to \infty}\frac{n^x\,n!}{x(x+1)(x+2)\cdots (x+n)}}$$
And we are done.