I am working trying to integrate this function...
$$\int_0^{\infty } \frac{e^{-x}}{2 \left(1-\lambda \left(1-e^{-x} (x+1)\right)\right)} \, dx$$
but I can't find a way to do it. However, a similar one does...
$$\int_0^{\infty } \frac{x e^{-x}}{2 \left(1-\lambda \left(1-e^{-x} (x+1)\right)\right)} \, dx = \frac{-\log (1-\lambda)}{2 \lambda }$$
Is there any way to use the second result to integrate the first?
g(1/2); 1
– GaussTheBauss Mar 01 '17 at 16:16