Let $a$, $b$ and $c$ be positive numbers such that $abc=1$. Prove that: $$\frac{a}{a^2+b^2+4}+\frac{b}{b^2+c^2+4}+\frac{c}{c^2+a^2+4}\leq\frac{1}{2}$$
This inequality is a similar to the following.
Let $a$, $b$ and $c$ be non-negative numbers. Prove that: $$\frac{a}{a^2+b^2+2}+\frac{b}{b^2+c^2+2}+\frac{c}{c^2+a^2+2}\leq\frac{3}{4},$$ which we can prove by AM-GM: $$\sum_{cyc}\frac{a}{a^2+b^2+2}\leq\frac{1}{2}\sum_{cyc}\frac{a}{\sqrt{(a^2+1)(b^2+1)}}\leq\frac{1}{4}\sum_{cyc}\left(\frac{a^2}{a^2+1}+\frac{1}{b^2+1}\right)=\frac{3}{4}$$