One form of Stolz-Cesaro that is well known states:
If $(a_n)$ and $(b_n)$ are real sequences such that $b_n \uparrow \infty$ and $(a_{n+1} - a_n)/(b_{n+1} - b_n)$ converges as $n \to \infty$, then
$$ \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L \in \mathbb{R} \cup\{\pm \infty\} \,\, \implies \,\, \lim_{n \to \infty}\frac{a_n}{b_n} =L$$
It is perhaps not so well known that a reverse implication is true when an additional condition is imposed:
$$ \lim_{n \to \infty}\frac{b_n}{b_{n+1}} = B \in \mathbb{R} \setminus \{1\} , \,\,\,\,\, \lim_{n \to \infty}\frac{a_n}{b_n} = L \,\, \implies \,\,\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L $$
For a proof note that
$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} \left(1 - \frac{b_n}{b_{n+1}} \right) = \frac{a_{n+1}}{b_{n+1}} - \frac{a_n}{b_{n+1}} = \frac{a_{n+1}}{b_{n+1}} - \frac{a_n}{b_{n}} \frac{b_n}{b_{n+1}}$$
and, hence,
$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \left(1 - \frac{b_n}{b_{n+1}} \right)^{-1} \left(\frac{a_{n+1}}{b_{n+1}} - \frac{a_n}{b_{n}} \frac{b_n}{b_{n+1}} \right)$$
If $B \neq 1$, the limit on the RHS exists and
$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = (1- B)^{-1}(L - L B) = L$$
If $B = 1$, then counterexamples to the reverse implication are readily found.
The question is what additional conditions are needed for the reverse Stolz -Cesaro theorem to hold in the case where $B = 1$?