Here are two proofs.
For the first, we write
$$ \int_0^\infty \frac{\sin x}{x} \ dx = \sum_{n=0}^\infty \int_{n \pi}^{ (n + 1) \pi} \frac{\sin x}{x} \ dx \ .$$
Now define
$$ x_n = \int_{n \pi}^{ (n + 1) \pi} \frac{\sin x}{x} \ dx \ ,$$
and note that the terms $x_n$ alternate in sign since $\sin x$ alternates in sign. We have
$$ - \frac{1}{ n} \leq x_n \leq \frac{1}{n} \ ,$$
so $\lim_{n \to \infty} x_n = 0$. Finally, note that
$$|x_n| = \int_{n \pi}^{(n + 1) \pi } \frac{|\sin x|}{x} \ dx = \int_{(n + 1) \pi}^{(n + 2) \pi } \frac{|\sin x|}{x - \pi} \ dx \geq \int_{(n + 1) \pi}^{(n + 2) \pi } \frac{|\sin x|}{x} \ dx = |x_{n+1}| \ ,
$$
so $|x_n|$ is monotonically decreasing. We can thus conclude that the series
$$ \sum_{n=0}^\infty x_n$$
satisfies the conditions of Leibniz's test for alternating series, and thus converges.
For the second, using continuity, one can show that
$$ \int_0^1 \frac{\sin x}{x} \ dx < \infty \ .$$
Now for the remaining integral, we have
$$ \int_1^\infty \frac{\sin x}{x} \ dx = - \frac{\cos x}{x} |_{1}^\infty - \int_1^\infty \frac{\cos x}{x^2} \ dx = \cos 1 - \int_1^\infty \frac{\cos x}{x^2} \ dx \ .$$
Now note that
$$ \left| \int_1^\infty \frac{\cos x}{x^2} \ dx \right| \leq \int_1^\infty \frac{1}{x^2} \ dx < \infty \ .$$
So, the integral
$$ \int_1^\infty \frac{\sin x}{x} \ dx < \infty \ .$$