$|a_{n+1}-a_n| \leq \frac{1}{2} |a_{n}-a_{n-1}|$. I'm trying to show that $(a_n)$ is convergent by showing that $(a_n)$ is Cauchy.
let $|a_2 - a_1 | =x$.
$|a_3-a_2| \leq \frac{1}{2}x$
$|a_4-a_3| \leq \frac{1}{2}|a_3-a_2|\leq \frac{1}{4}x$
In general, for every $n$:
$|a_{n+1}-a_n| \le \frac {1}{2^{n-1}}x$
Let $\epsilon >0$
for every $m,n > 0 $, say $m>n$ the following holds:
$$|a_m-a_n| = |a_m-a_{m-1} + a_{m-1} - a_{m-2} \dots a_{n+1}- a_n| \le$$
$$|a_m-a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots |a_{n+1}-a_n| \leq \frac{x}{2^{m-2}} + \frac{x}{2^{m-3}} + \dots + \frac{x }{2^{n-1}}$$.
I can say that for big enough $n,m$, $|a_m-a_n|<\epsilon$ and therefore, this sequence is Cauchy? It sounds not good enough to me yet I don't know what else to do here.